─────┬───── $𝖟𝕷𝖔𝖌𝖎𝖈/𝕾𝖒𝖚𝖑𝖑𝖞𝖆𝖓/𝕾𝖆𝖙𝖆𝖓-𝕮𝖆𝖓𝖙𝖔𝖗-𝖆𝖓𝖉-𝕴𝖓𝖋𝖎𝖓𝖎𝖙𝖞/𝖈𝖍1-𝖕𝖟1.𝖘𝖆𝖕𝖕𝖍𝖎𝖗𝖊 ──────────────────────────────
    0┊-----------------------------| Satan, Cantor & Infinity ch I pz 1 |------------------------[sp]-
    1┊--|∙Chapter∙I∙Puzzle∙1∙is∙asked∙on∙pg∙3                                                        
    2┊                                                                                               
    3┊--|∙A∙statement∙made∙by∙a∙resident∙of∙The∙Island∙of∙Knights∙and∙Knaves∙is∙true∙if∙and          
    4┊--|∙only∙if∙the∙resident∙is∙a∙knight.∙For∙this∙first∙problem                                   
    5┊                                                                                               
    6┊--|∙a∙≡∙Arthur∙is∙a∙kinght∙∙∙b∙≡∙Bernard∙is∙a∙knight∙∙∙c∙≡∙Charles∙is∙a∙knight                 
    7┊                                                                                               
    8┊--|∙while∙⇒∙is∙used∙for∙implication,∙≡∙is∙used∙instead∙of∙⇐⇒∙for∙if∙and∙only∙if,∙to            
    9┊--|∙emphasize∙equivalence                                                                      
   10┊                                                                                               
   11┊--|∙The∙statement∙that∙Bernard∙and∙Charles∙are∙both∙knights∙is∙translated∙as∙b∧c               
   12┊                                                                                               
   13┊--|∙Either∙Arthur∙is∙a∙knight,∙and∙so∙are∙both∙Bernard∙and∙Charles,∙which∙is∙a∧(b∧c)           
   14┊--|∙or∙Arthur∙is∙a∙knave,∙and∙not∙both∙Bernard∙and∙Charles∙are∙knights∙is∙¬a∧¬(b∧c)            
   15┊                                                                                               
   16┊--|∙Combined,∙a∧(b∧c)∨¬a∧¬(b∧c)                                                                
   17┊                                                                                               
   18┊--|∙We∙can∙also∙consider,∙the∙truth∙of∙a∙statement∙is∙equivalent∙to∙the∙speakers∙knightliness. 
   19┊--|∙Symbolically,∙a≡b∧c.∙The∙two∙forms∙are∙equivalent:                                         
   20┊                                                                                               
   21┊taut:∙a∧(b∧c)∙∨∙¬a∧¬(b∧c)∙≡∙(a≡b∧c)                                                            
     ┊                             a             │✔│✘│✔│✘│✔│✘│✔│✘│                                    
     ┊                             b             │✔│✔│✘│✘│✔│✔│✘│✘│                                    
     ┊                             c             │✔│✔│✔│✔│✘│✘│✘│✘│                                    
     ┊                 ──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                    
     ┊                            b∧c            │✔│✔│✘│✘│✘│✘│✘│✘│                                    
     ┊                          a∧(b∧c)          │✔│✘│✘│✘│✘│✘│✘│✘│                                    
     ┊                            ¬a             │✘│✔│✘│✔│✘│✔│✘│✔│                                    
     ┊                          ¬(b∧c)           │✘│✘│✔│✔│✔│✔│✔│✔│                                    
     ┊                         ¬a∧¬(b∧c)         │✘│✘│✘│✔│✘│✔│✘│✔│                                    
     ┊                     a∧(b∧c)∨¬a∧¬(b∧c)     │✔│✘│✘│✔│✘│✔│✘│✔│                                    
     ┊                           a≡b∧c           │✔│✘│✘│✔│✘│✔│✘│✔│                                    
     ┊                 ──────────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                    
     ┊                 a∧(b∧c)∨¬a∧¬(b∧c)≡(a≡b∧c) │✔│✔│✔│✔│✔│✔│✔│✔│                                    
   22┊                                                                                               
   23┊--|∙Arthur∙denies∙Bernard∙is∙a∙knight:∙a∧¬b∙∨∙¬a∧¬(¬b),∙or∙a≡¬b                                
   24┊                                                                                               
   25┊taut:∙a∧¬b∙∨∙¬a∧¬¬b∙≡∙(a≡¬b)                                                                   
     ┊                              a          │✔│✘│✔│✘│                                              
     ┊                              b          │✔│✔│✘│✘│                                              
     ┊                      ───────────────────┼─┼─┼─┼─┤                                              
     ┊                              ¬b         │✘│✘│✔│✔│                                              
     ┊                             a∧¬b        │✘│✘│✔│✘│                                              
     ┊                              ¬a         │✘│✔│✘│✔│                                              
     ┊                             ¬¬b         │✔│✔│✘│✘│                                              
     ┊                            ¬a∧¬¬b       │✘│✔│✘│✘│                                              
     ┊                         a∧¬b∨¬a∧¬¬b     │✘│✔│✔│✘│                                              
     ┊                             a≡¬b        │✘│✔│✔│✘│                                              
     ┊                      ───────────────────┼─┼─┼─┼─┤                                              
     ┊                      a∧¬b∨¬a∧¬¬b≡(a≡¬b) │✔│✔│✔│✔│                                              
   26┊                                                                                               
   27┊--|∙we∙conclude∙Bernard∙is∙a∙knight∙and∙both∙Arthur∙and∙Charles∙are∙knaves:∙¬a∧b∧¬c            
   28┊                                                                                               
   29┊--|∙Our∙solution∙satisfies∙Arthur's∙first∙statement                                            
   30┊taut:∙¬a∧b∧¬c∙⇒∙(a≡b∧c)                                                                        
     ┊                            a        │✔│✘│✔│✘│✔│✘│✔│✘│                                          
     ┊                            b        │✔│✔│✘│✘│✔│✔│✘│✘│                                          
     ┊                            c        │✔│✔│✔│✔│✘│✘│✘│✘│                                          
     ┊                     ────────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                          
     ┊                           ¬a        │✘│✔│✘│✔│✘│✔│✘│✔│                                          
     ┊                          ¬a∧b       │✘│✔│✘│✘│✘│✔│✘│✘│                                          
     ┊                           ¬c        │✘│✘│✘│✘│✔│✔│✔│✔│                                          
     ┊                         ¬a∧b∧¬c     │✘│✘│✘│✘│✘│✔│✘│✘│                                          
     ┊                           b∧c       │✔│✔│✘│✘│✘│✘│✘│✘│                                          
     ┊                          a≡b∧c      │✔│✘│✘│✔│✘│✔│✘│✔│                                          
     ┊                     ────────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                          
     ┊                     ¬a∧b∧¬c⇒(a≡b∧c) │✔│✔│✔│✔│✔│✔│✔│✔│                                          
   31┊                                                                                               
   32┊--|∙and∙Arthur's∙second∙statement                                                              
   33┊taut:∙¬a∧b∧¬c∙⇒∙(a≡¬b)                                                                         
     ┊                           a        │✔│✘│✔│✘│✔│✘│✔│✘│                                           
     ┊                           b        │✔│✔│✘│✘│✔│✔│✘│✘│                                           
     ┊                           c        │✔│✔│✔│✔│✘│✘│✘│✘│                                           
     ┊                     ───────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                           
     ┊                           ¬a       │✘│✔│✘│✔│✘│✔│✘│✔│                                           
     ┊                          ¬a∧b      │✘│✔│✘│✘│✘│✔│✘│✘│                                           
     ┊                           ¬c       │✘│✘│✘│✘│✔│✔│✔│✔│                                           
     ┊                        ¬a∧b∧¬c     │✘│✘│✘│✘│✘│✔│✘│✘│                                           
     ┊                           ¬b       │✘│✘│✔│✔│✘│✘│✔│✔│                                           
     ┊                          a≡¬b      │✘│✔│✔│✘│✘│✔│✔│✘│                                           
     ┊                     ───────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                           
     ┊                     ¬a∧b∧¬c⇒(a≡¬b) │✔│✔│✔│✔│✔│✔│✔│✔│                                           
   34┊                                                                                               
   35┊--|∙and∙is∙in∙fact∙logically∙equivalent∙to∙Arthur's∙statements,∙taken∙together                 
   36┊taut:∙¬a∧b∧¬c∙≡∙(a≡b∧c)∧(a≡¬b)                                                                 
     ┊                            a            │✔│✘│✔│✘│✔│✘│✔│✘│                                      
     ┊                            b            │✔│✔│✘│✘│✔│✔│✘│✘│                                      
     ┊                            c            │✔│✔│✔│✔│✘│✘│✘│✘│                                      
     ┊                  ───────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                      
     ┊                            ¬a           │✘│✔│✘│✔│✘│✔│✘│✔│                                      
     ┊                           ¬a∧b          │✘│✔│✘│✘│✘│✔│✘│✘│                                      
     ┊                            ¬c           │✘│✘│✘│✘│✔│✔│✔│✔│                                      
     ┊                         ¬a∧b∧¬c         │✘│✘│✘│✘│✘│✔│✘│✘│                                      
     ┊                           b∧c           │✔│✔│✘│✘│✘│✘│✘│✘│                                      
     ┊                          a≡b∧c          │✔│✘│✘│✔│✘│✔│✘│✔│                                      
     ┊                            ¬b           │✘│✘│✔│✔│✘│✘│✔│✔│                                      
     ┊                           a≡¬b          │✘│✔│✔│✘│✘│✔│✔│✘│                                      
     ┊                      (a≡b∧c)∧(a≡¬b)     │✘│✘│✘│✘│✘│✔│✘│✘│                                      
     ┊                  ───────────────────────┼─┼─┼─┼─┼─┼─┼─┼─┤                                      
     ┊                  ¬a∧b∧¬c≡(a≡b∧c)∧(a≡¬b) │✔│✔│✔│✔│✔│✔│✔│✔│                                      
   37┊                                                                                               
   38┊                                                                                               
   39┊proof:∙a≡b∧c∙a≡¬b∙∴∙¬a∧b∧¬c                                                                    
   40┊∙∙A∙⏵∙A∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙[rw]∙∙∙--|∙Simple∙Rewrite∙via∙Sapphire∙Normal∙Form                  
   41┊∙∙P∧(P⇒Q)∙⏵∙Q∙∙∙∙∙∙∙∙∙∙∙∙∙∙[mp]∙∙∙--|∙Modus∙Ponens                                             
   42┊∙∙¬A∨B∙⏴⏵∙A⇒B∙∙∙∙∙∙∙∙∙∙∙∙∙∙[imp]∙∙--|∙Implication                                              
   43┊∙∙X⇒A∧B∙⏴⏵∙(X⇒A)∧(X⇒B)∙∙∙∙∙[cic]∙∙--|∙Composition∙of∙Implication∙over∙Conjunction              
   44┊∙∙A⇒B∙⏴⏵∙¬B⇒¬A∙∙∙∙∙∙∙∙∙∙∙∙∙[cp]∙∙∙--|∙Contrapositive                                           
   45┊∙∙(A⇒B)∧(A⇒¬B)∙⏴⏵∙¬A∙∙∙∙∙∙∙[cdct]∙--|∙Contradiction/Explosion                                  
   46┊∙∙¬(A∧B)∙⏴⏵∙¬A∨¬B∙∙∙∙∙∙∙∙∙∙[dna]∙∙--|∙Distribution∙of∙negation∙over∙and                        
   47┊                                                                                               
   48┊                                                                                               
   49┊∙∙a≡¬b∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙[anb] - assumptions                                                 
   50┊∙∙¬a⇒b∙∙∙∙∙∙∙∙∵∙cp∙⇑∙∙∙∙∙∙∙[nab] - A⇒B ⏴⏵ ¬B⇒¬A ⟪B→a A→¬b⟫                                     
   51┊                                                                                               
   52┊∙∙a≡b∧c∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙[abc] - assumptions                                                 
   53┊∙∙a⇒b∙∙∙∙∙∙∙∙∙∵∙cic∙⇑            - X⇒A∧B ⏴⏵ (X⇒A)∧(X⇒B) ⟪X→a A→c B→b⟫                          
   54┊∙∙¬a∙∙∙∙∙∙∙∙∙∙∵∙cdct∙anb∙⇑∙[na]  - (A⇒B)∧(A⇒¬B) ⏴⏵ ¬A ⟪A→a B→¬b⟫                               
   55┊∙∙b∙∙∙∙∙∙∙∙∙∙∙∵∙mp∙⇑∙nab∙∙∙[b]   - P∧(P⇒Q) ⏵ Q ⟪P→¬a Q→b⟫                                      
   56┊                                                                                               
   57┊∙∙¬a⇒¬(b∧c)∙∙∙∵∙cp∙abc - A⇒B ⏴⏵ ¬B⇒¬A ⟪B→a A→b∧c⟫                                              
   58┊∙∙¬(b∧c)∙∙∙∙∙∙∵∙mp∙⇑∙na - P∧(P⇒Q) ⏵ Q ⟪P→¬a Q→¬(b∧c)⟫                                          
   59┊∙∙¬b∨¬c∙∙∙∙∙∙∙∵∙dna∙⇑   - ¬(A∧B) ⏴⏵ ¬A∨¬B ⟪A→c B→b⟫                                            
   60┊∙∙b⇒¬c∙∙∙∙∙∙∙∙∵∙imp∙⇑   - ¬A∨B ⏴⏵ A⇒B ⟪B→¬c A→b⟫                                               
   61┊∙∙¬c∙∙∙∙∙∙∙∙∙∙∵∙mp∙b∙⇑  - P∧(P⇒Q) ⏵ Q ⟪P→b Q→¬c⟫                                               
   62┊∙∙¬a∧b∧¬c∙∙∙∙∙∵∙rw∙na∙b∙⇑ - A ⏵ A ⟪A→b∧¬a∧¬c⟫                                                  
─────┴────────────────────────────────────────────────────────────────────────────────────────────────